Merhabalar
Forum Gerçek üyesi değilsiniz ya da Üye Girişi yapmamışsınız.
Sitemizden tam olarak yararlanabilmek için;
Lütfen Buraya tıklayarak üye olunuz.
Forum Gerçek

Forumları Okundu Kabul Et Bugünkü MesajlarYazdığım Cevaplar Açtığım Konular Kim Nerede
Geri git   Forum Gerçek > Bir Yudum İnsan > Sosyal Bilimler > Yaşamıyla İz Bırakanlar


Cevapla
 
LinkBack Seçenekler
Eski 20.06.12, 16:35   #1
Süper Üye

Mislina - ait Kullanıcı Resmi (Avatar)
Üyelik Tarihi: May 2012
Konular: 458
Mesajlar: 2,850
Ettiği Teşekkür: 4003
Aldığı Teşekkür: 9552
Rep Derecesi : Mislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzel
Ruh Halim: none
Post Carl Friedrich Gauss - Rakamlarla Oynamak




Carl Friedrich Gauss ya da Gauß (30 Nisan 1777 – 23 Şubat 1855), Alman kökenli matematikçi ve bilim insanı.

Katkıda bulunduğu alanlardan bazıları; sayılar kuramı, analiz, diferansiyel geometri, jeodezi, elektrik, manyetizma, astronomi ve optiktir. "Matematikçilerin prensi" ve "antik çağlardan beri yaşamış en büyük matematikçi" olarak da bilinen Gauss, matematiğin ve bilimin pek çok alanına etkisini bırakmıştır ve tarihin en nüfuzlu matematikçilerinden biri olarak kabul edilir.
Gauss'un çocukluk yıllarından beri dahi olduğunu gösteren pek çok hikâye vardır, nitekim pek çok matematiksel keşfini henüz 20 yaşına gelmeden yapmıştır. Sayılar kuramının önemli sonuçlarını derleyip kendi katkılarını da ekleyerek yazdığı büyük eseri Disquisitiones Arithmeticae'yi 21 yaşında (1798) bitirmişse de, eser ilk olarak 1801'de basılmıştır.

Hayatı

Çocukluğu ve gençliği

Gauss, Kutsal Roma Cermen İmparatorluğu'na bağlı olan Braunschweig-Lüneburg Dükalığı'ndaki Braunschweig kentinde, Gebhard Dietrich ve Dorothea Gauss çiftinin tek çocuğu olarak dünyaya geldi. Babası az eğitimli bir taş ve duvar ustasıydı, annesinin ise okuma-yazması bile yoktu. Efsaneye göre, Gauss henüz üç yaşındayken, babasının kâğıt üzerinde yaptığı hesapları kafasından kontrol edip düzelterek dehasını belli etti.
Bir başka meşhur hikâyeye göre, Gauss'un ilkokul öğretmeni J.G. Büttner, öğrencilerini oyalamak için 1'den 100'e kadar olan sayıları toplamalarını isteyince, Gauss cevabı birkaç saniye içinde bularak hem öğretmenini, hem de asistanı Martin Bertels'i hayrete düşürdü. Küçük Gauss, sayı listesinin iki zıt ucundan birer sayı alıp topladığında hep aynı sonucun çıktığını farketmişti: (1 + 100) = (2 + 99) = (3 + 98) = ... = (51 + 50) = 101, vs. Böylece 1'den 100'e kadar olan sayıların toplamı 50 × 101 = 5050 oluyordu.

Gauss, Braunschweig Dükü Karl Wilhelm Ferdinand'in verdiği burs sayesinde 1792-1795 arasında Collegium Carolinum'da (bugünkü adıyla Braunschweig Teknik Üniversitesi), 1795-1798 arasında da Göttingen Üniversitesi'nde öğrenim gördü. 1796'da kenar sayısı bir Fermat asalı olan her düzgün çokgenin, sadece cetvel ve pergel kullanılarak çizilebileceğini kanıtladı. Bu tür cetvel ve pergel problemleri Antik Yunan'dan beri matematikçileri meşgul etmekteydi, dolayısıyla da Gauss'un keşfinin önemi büyüktü. Gauss bu başarısından o kadar memnun oldu ki, mezar taşına bir düzgün onyedigenin oyulmasını vasiyet etti. Ne var ki, daireye çok yakın olan bu şeklin oyulması çok zor olacağından, vasiyetini yerine getirecek bir taş ustası bulamadı.
1796 Gauss için oldukça verimli bir yıl oldu. Düzgün çokgenlerle ilgili keşfinden bir ay kadar sonra, yine kendi keşfi olan modüler aritmetik fikrini kullanarak, sayılar kuramında "karesel karşılıklılık ilkesi" (Alm. quadratisches Reziprozitätsgesetz) olarak bilinen çok önemli teoremi kanıtladı. İlk olarak Euler ve Legendre tarafından ortaya atılmış ama kanıtlanamamış olan bu teorem, ikinci dereceden denklemlerin çözülebilirliğinin belirlenmesini sağlıyordu. Yine aynı yıl içinde Gauss, asal sayıların tamsayılar arasındaki dağılımına ilişkin önemli bir sonuç buldu. Bundan kısa bir süre sonra da, her tamsayının en fazla üç üçgensel sayının toplamı olarak yazılabileceğini kanıtladı, ve 10 Temmuz 1796'da günlüğüne şu notu düştü: "Eureka! Num = \Delta+\Delta+\Delta." Ekim 1796'da ise katsayıları sonlu bir cisimden gelen polinomların çözümleriyle ilgili bir sonuç yayımladı. (Bu sonuç, 150 yıl sonraki Weil varsayımlarının da çıkış noktası olmuştur.)

Orta yaşları

Gauss, 1799'da bitirdiği doktora tezinde cebirin temel teoreminin bir kanıtını sundu. Bu çok önemli teorem, karmaşık sayılar üzerine tanımlanmış her polinomun en az bir kökü olduğunu söyler. Gauss'tan önce pek çok matematikçi bu teoremi kanıtlamayı denemiş, ama hiçbir kanıt genel kabul görmemişti. Gauss'un kanıtına da, o zamanlar henüz kanıtlanmamış olan Jordan eğri teoremini kullandığı için itiraz edildi. Bu itirazlar üzerine Gauss, hayatı boyunca üç değişik kanıt daha sunacak, 1849'daki son kanıtı tüm matematikçilerden kabul görecekti. Gauss bu kanıtlar üzerinde çalışırken, karmaşık sayılar kavramının olgunlaşmasına çok büyük katkıda bulundu.
1801'de yayımladığı Disquisitiones Arithmeticae, sayılar kuramına modüler aritmetik gibi birçok yenilik getirdi. Aynı yıl içinde, İtalyan astronom Giuseppe Piazzi, Ceres asteroidini keşfetti, ama asteroidi ancak 40 gün kadar takip edebildikten sonra kaybetti. 24 yaşındaki Gauss, üç aylık bir çalışmadan sonra, Ceres'in tekrar görülebileceği pozisyonu hesapladı, ve 31 Aralık'ta iki ayrı astronom (Franz Xaver von Zach ve Heinrich Olbers), Ceres'i tam Gauss'un söylediği pozisyonda gözlemlediler. Zach, "Doktor Gauss'un zeki çalışması ve hesapları olmasaydı, Ceres'i tekrar bulamayabilirdik" diyerek Gauss'un katkısına teşekkür etti. O zamana kadar hala Dük'ün verdiği bursla geçinen ve bu durumdan memnun olmayan Gauss, astronomide kariyer yapmayı düşündü, ve 1807'de Göttingen Üniversitesi'nde astronomi profesörü ve gözlemevi müdürü olarak çalışmaya başladı. Hayatının sonuna kadar aynı üniversitede çalışacaktı.
Ceres'in keşfi sayesinde gezegen ve asteroidlerin Güneş çevresindeki hareketleriyle ilgilenmeye başlayan Gauss, 1809'da Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Güneş çevresinde konik kesitler üzerinde hareket eden gök cisimlerinin hareketlerinin teorisi) adlı eserini yayımladı. Bu eser, günümüz bilimlerinde yaygın olarak kullanılan en küçük kareler yöntemini de ayrıntılı olarak ele alıyordu. (Aynı yöntem, 1805'te Fransız matematikçi Adrien-Marie Legendre ve 1808'de Amerikalı matematikçi Robert Adrain tarafından da tanımlanmış ve kullanılmıştı, fakat Gauss bu yöntemi 1795'den beri bildiğini iddia etti.

Gauss en karmaşık hesapları aklından yapabilmesiyle de ünlenmişti. Anlatılana göre, Ceres'in izleyeceği yörüngeyi nasıl bu kadar hatasız hesaplayabildiği sorulunca, "logaritma kullandım" cevabını vermiş, logaritma cetvelini nasıl bu kadar hızlı kullanabildiği sorulunca da "cetvele ne gerek var, hepsini kafamda hesaplıyorum!" demiştir.
1818'de Hannover eyaleti için yüzey ölçümleri yapan Gauss, bu ölçümler için helyotropu (güneş ışığı ve aynalar yardımıyla doğrultu gözlemleri yapmaya yarayan aygıt) icat edip kullandı.
Gauss, Öklit dışı geometrilerin varlığını keşfettiğini, ama tepkilerden çekindiği için fikirlerini yayımlamadığını iddia etmiştir. Öklit dışı geometriler, Öklit aksiyomlarının bir kısmını atarak oluşturulan, sezgilerimizle çelişen fakat kendi içinde tutarlı geometrilerdir ve Einstein'ın genel görelilik kuramı gibi pek çok yeni fikrin doğumunu mümkün kılmışlardır. Gauss'un yakın arkadaşı Farkas Bolyai'nin oğlu János Bolyai, 1832'de Öklit dışı geometrilerle ilgili eserini yayımladığında, Gauss Farkas Bolyai'ye bir mektup yazdı ve "eseri övmek kendimi övmek gibi olur, çünkü eserin içeriği son 30-35 yıldır benim kafamda dolaşan fikirlerle neredeyse birebir örtüşüyor" dedi. Bu kanıtsız iddia, János Bolyai ve Gauss'un arasının açılmasına sebep oldu. (Gauss'un notları ve mektuplarından anlaşıldığı kadarıyla, Öklit dışı geometrilerle ilgili temel fikirleri János Bolyai'den önce keşfettiği doğrudur.

Gauss, Hannover'de yaptığı yüzey ölçümleri sırasında, ölçüm hatalarının istatistiksel dağılımını veren (ve daha önce astronomi araştırmalarında da kullandığı) normal dağılım fikrini kafasında iyice belirginleştirdi. (Bugün normal dağılıma Gauss dağılımı da denmektedir.) Ayrıca bu ölçümler Gauss'un diferansiyel geometriye de (eğriler ve yüzeylerle ilgilenen bir matematik dalı) ilgi duymasını sağladı. 1828'de bu matematik dalının önemli teoremlerinden biri olan theorema egregium'u kanıtladı.

Yaşlılığı ve ölümü

1831 yılında Gauss, fizik profesörü Wilhelm Weber'le beraber çalışmaya başladı. Bu beraberlik, manyetizma ve elektrik konularına pek çok yenilik getirecekti (kütle, uzunluk ve zamana bağlı yeni bir manyetizma birimi gibi). 1833'te Gauss ve Weber ilk elektromanyetik telgrafı icat ettiler, ve bu telgrafla gözlemevini fizik enstitüsüne bağladılar. Gauss, hala müdürü olduğu gözlemevinin bahçesine bir manyetik gözlemevi kurulması talimatını verdi, ve Weber'le beraber Dünya'nın çeşitli yerlerindeki manyetik alanı ölçmek amacıyla bir "manyetik kulüp" (Alm. magnetischer Verein) kurdu. Gauss'un bu sıralarda geliştirdiği, manyetik alanın yatay yoğunluğunu ölçmeye yarayan metod, 20. yüzyıl ortalarına kadar kullanılmaya devam etti. Gauss ayrıca, Dünya'nin manyetik alanının iç (çekirdek) ve dış (manyetosfer) kaynaklarını ayırmak için gereken matematiksel teoriyi de geliştirdi. Hayatının sonlarına doğru matematiksel yeteneklerinin köreldiğini hissedince edebiyatla ilgilenmeye başladı.
Gauss 23 Şubat 1855'te, 78 yaşındayken, yıllardır yaşadığı Göttingen'de hayata gözlerini yumdu ve bu şehirdeki Albanifriedhof 'a gömüldü. Cenazesinde damadı Heinrich Ewald ve yakın arkadaşı (aynı zamanda biyografisinin yazarı) Wolfgang Sartorius von Waltershausen birer konuşma yaptılar. Beyni araştırma için muhafaza edildi, ve bugün hala Göttingen Üniversitesi'nin tıp fakültesinde formalin içinde korunmaktadır.

Aile hayatı

Gauss ilk evliliğini 1805 yılında Johanna Osthoff ile yaptı. Bu evlilikten Joseph (1806-1873) adında bir oğlu ve Wilhelmine (1808-1846) adında bir kızı oldu. 1809'da, Louis adını verdikleri üçüncü çocuğun doğumu sırasında Johanna hayatını kaybetti, Louis de henüz bir yaşına gelmeden annesini takip etti. Gauss, bu ölümlerden dolayı girdiği depresyondan asla tam anlamıyla kurtulamadı. Louis'in ölümünden kısa süre sonra, 1810'da karısının arkadaşı Minna Waldeck ile evlendi. Bu evlilikten de üç çocuğu oldu: Eugen (1811-1896), Wilhelm (1813-1879) ve Therese (1816-1864). Minna 1831'de hastalıktan ölünce Gauss'a ölümüne kadar kızı Therese baktı. Eugen ve Wilhelm ABD'nin Missouri eyaletine yerleştiler.

Kişiliği

Gauss tam bir mükemmeliyetçi ve bir işkolikti. Bir hikâyeye göre, bir problem üzerinde çalışırken karısının ölmek üzere olduğu haberini alınca "biraz beklesin, bitirmek üzereyim" demişti.[6] Kafasındaki fikirler tam olgunluğa erişmeden onları yayımlamak istemezdi. Bu konudaki ilkesini pauca sed matura (az ama olgun) sözüyle özetliyordu. Ölümünden sonra incelenen günlükleri ortaya çıkardı ki, meslekdaşları tarafından yayımlanmış olan pek çok önemli matematiksel keşfi o daha önceden yapmış, ama yayımlamamayı tercih etmişti. Matematik tarihçisi Eric Temple Bell'e göre, Gauss günlüklerine yazdığı tüm matematiksel fikirleri hayattayken yayımlamış olsaydı matematik 50 yıl ileri atlamış olurdu

Gauss, kendisini örnek alan genç matematikçileri desteklemediği için çok eleştirildi. Pek çok meslekdaşı onu mesafeli ve katı buluyordu. Gauss öğretmenlikten nefret ettiğini söylese de Richard Dedekind, Bernhard Riemann, Friedrich Bessel gibi bazı öğrencileri sonradan başarılı ve üretken matematikçiler oldular.
Gauss'un babasıyla arası iyi değildi. Babası Gauss'un matematik ve bilim okumasını istemiyor, kendisi gibi taş ustası olmasını istiyordu. Gauss, eğitimi boyunca babasından görmediği desteği annesinden gördü. Oğullarıyla da iyi geçinemeyen Gauss, Eugen'in ve daha sonra Wilhelm'in ABD'ye göç etmesine sebep oldu.
Gauss, yazdığı zeki kanıtları nasıl akıl ettiğini asla açıklamazdı. Kanıtı bir kere bulduktan sonra sanki vahiyle gelmiş gibi yazar, sonuca nasıl ulaştığı konusunda özellikle ipucu vermezdi.
Gauss, kişiselleştirilmiş bir Tanrı'ya inanmıyordu. Bu sebeple deist olduğu söylenebilir. Ayrıca bir monarşi destekçisiydi ve tüm Almanya'yı etkisi altına alan 1848 devrimlerini onaylamıyordu.

Anma
  • Gauss'un ismi matematik ve fizikte onlarca teorem, formül ve kavrama verilmiştir. Cgs sistemindeki manyetik alan birimi 1 Gauss'tur.
  • 1989-2001 yılları arasında Gauss'un resmi, bir normal dağılım eğrisiyle beraber, 10 DM banknotlarının üzerine basılmıştır.
  • 1977'de, Gauss'un 200. doğum günü şerefine, Doğu Almanya ve Batı Almanya'da ayrı ayrı hatıra pulları basılmıştır.
  • Ay'daki Gauss krateri, "1001 Gaussia" asteroidi ve Antarktika'da sönmüş bir volkan olan Gaussberg, Gauss'un anısına isimlendirilmiş bazı doğal oluşumlardır.
  • Almanya'nın Dransfeld kentindeki 51 metrelik beton gözlem kulesinin ismi Gauss Kulesi'dir.
  • Alman yazar Daniel Kehlmann'ın 2005 tarihli romanı Die Vermessung der Welt (Dünya'nın Ölçümü), Gauss ve Alexander von Humboldt'un hayatlarını konu almaktadır.
Kaynak




__________________
"Ama gerçek, aziz dostum, can sıkıcıdır."

Mislina isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
8 Üyemiz Mislina'in Mesajına Teşekkür Etti.
Eski 08.12.12, 23:07   #2
Uzman Üye

C.Cienfuegos - ait Kullanıcı Resmi (Avatar)
Üyelik Tarihi: Aug 2012
Konular: 95
Mesajlar: 1,329
Ettiği Teşekkür: 1094
Aldığı Teşekkür: 5102
Rep Derecesi : C.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmedeC.Cienfuegos muhteşem bir gelişmede
Ruh Halim: Cap Canli
Standart Cevap: Carl Friedrich Gauss - Rakamlarla Oynamak

Halen Gauss ile muhatap olmaktayım.Matematiğe hiç kafam basmadığı için onun saniyede yaptığı işlemler bana işkence gibi.
__________________

"Tanrım, artık bir ateist olduğum için beni bağışla , ama Nietzsche'yi okudun mu?"

John Fante
C.Cienfuegos isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
4 Üyemiz C.Cienfuegos'in Mesajına Teşekkür Etti.
Eski 30.10.14, 22:10   #3
Süper Üye

Mislina - ait Kullanıcı Resmi (Avatar)
Üyelik Tarihi: May 2012
Konular: 458
Mesajlar: 2,850
Ettiği Teşekkür: 4003
Aldığı Teşekkür: 9552
Rep Derecesi : Mislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzelMislina gerçekten güzel
Ruh Halim: none
Standart Cevap: Carl Friedrich Gauss - Rakamlarla Oynamak

Alıntı:
Orjinal Mesaj Sahibi C.Cienfuegos Mesajı göster
Halen Gauss ile muhatap olmaktayım.Matematiğe hiç kafam basmadığı için onun saniyede yaptığı işlemler bana işkence gibi.
Rakamlar ile oynamayı seviyorum derken Gauss'u hiç düşünmemiştim Formüller, metodlar, teoriler v.s
__________________
"Ama gerçek, aziz dostum, can sıkıcıdır."

Mislina isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
2 Üyemiz Mislina'in Mesajına Teşekkür Etti.
Eski 01.11.14, 23:01   #4
Müdavim

Basakca - ait Kullanıcı Resmi (Avatar)
Üyelik Tarihi: Aug 2009
Konular: 2209
Mesajlar: 12,381
Ettiği Teşekkür: 83922
Aldığı Teşekkür: 79541
Rep Derecesi : Basakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardırBasakca şöhret ötesinde bir itibarı vardır
Ruh Halim: Ruhsuz
Standart Cevap: Carl Friedrich Gauss - Rakamlarla Oynamak

Bir deha olarak matematikte bulduğu bir çok formül yüzünden şimdi ki zamanın çocukları sıkça yad ettiğine eminim.

Aslında hayatın kendisi förmüllerden ve matematikten ibarettir.







__________________
"Ey egosu boyundan büyük insan..
Bir gün ölüp toprak olacaksın. Bir tohum filizlenecek ot olacaksın, bir öküz seni yiyecek ve atık olacaksın.. Yani hep aynı kalacaksın."

Basakca isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Basakca'in Mesajına Teşekkür Etti
Cevapla

Bu Sayfayı Paylaşabilirsiniz

Etiketler
gaussrakamlarla, oynamak


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler

Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık



WEZ Format +3. Şuan Saat: 22:37.


Powered by vBulletin® Version 3.8.8
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.6.0 PL2 ©2011, Crawlability, Inc.
Copyright ©2000 - 2019 www.forumgercek.com
Protected by CBACK.de CrackerTracker
Önemli Uyarı
www.forumgercek.com binlerce kişinin paylaşım ve yorum yaptığı bir forum sitesidir. Kullanıcıların paylaşımları ve yorumları onaydan geçmeden hemen yayınlanmaktadır. Paylaşım ve yorumlardan doğabilecek bütün sorumluluk kullanıcıya aittir. Forumumuzda T.C. yasalarına aykırı ve telif hakkı içeren bir paylaşımın yapıldığına rastladıysanız, lütfen bizi bu konuda bilgilendiriniz. Bildiriniz incelenerek, 48 saat içerisinde gereken yapılacaktır. Bildirinizi BURADAN yapabilirsiniz.
Page Rank Icon
Bumerang - Yazarkafe
McAfee Site Denetleme
Norton Site Denetleme
www.forumgercek.com Creative Commons Alıntı-Lisansı Devam Ettirme 3.0 Unported Lisansı ile lisanslanmıştır.